If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=1152
We move all terms to the left:
y^2-(1152)=0
a = 1; b = 0; c = -1152;
Δ = b2-4ac
Δ = 02-4·1·(-1152)
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{2}}{2*1}=\frac{0-48\sqrt{2}}{2} =-\frac{48\sqrt{2}}{2} =-24\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{2}}{2*1}=\frac{0+48\sqrt{2}}{2} =\frac{48\sqrt{2}}{2} =24\sqrt{2} $
| 12=6x÷49 | | -27=-9(f-96) | | 18+|7a-52|=14 | | 2(5x-80)+6=11 | | 30=(1/2)(6/5)b | | -6,3(x-1)+3,5(3+4x)=10x | | -8-8+3(x-2=-3x+2 | | 4=v+24/8 | | -3t-8+7t=34+9t=-2 | | z/6+28=31 | | 2x²+10x=3 | | 63=7(u+2) | | 10s-34=56 | | 5p^2=-18-33p | | ∣x+6∣=2x | | 6(g+46)=60 | | 11y*36=63 | | Xx1.5=15 | | ∣3x+9∣−10=−4 | | $0.09x=−6.3. | | (4/6)=(40/x) | | 9x-(3x-21)=75 | | 125m+100m+43875=45000-200m | | 25=4s-3 | | $0.09x=-6.3$0.09x=−6.3. | | 9=c-33/4 | | 12d-10d-1=15 | | 11y.36=63 | | 2(h+-2)=-38 | | 56=4(p+32) | | 6(3n-2)= | | 56=4(b+3) |